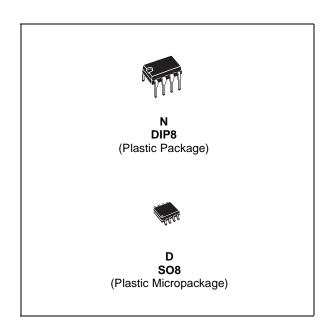


HIGH PERFORMANCE DUAL OPERATIONAL AMPLIFIER

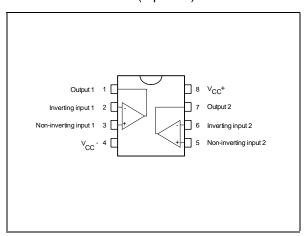
- LOW POWER CONSUMPTION
- SHORT CIRCUIT PROTECTION
- LOW DISTORTION, LOW NOISE
- HIGH GAIN-BANDWIDTH PRODUCT
- HIGH CHANNEL SEPARATION

DESCRIPTION

The LS204 is a high performance dual operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation as voltage follower in spite of its high Gain-Bandwidth Product.

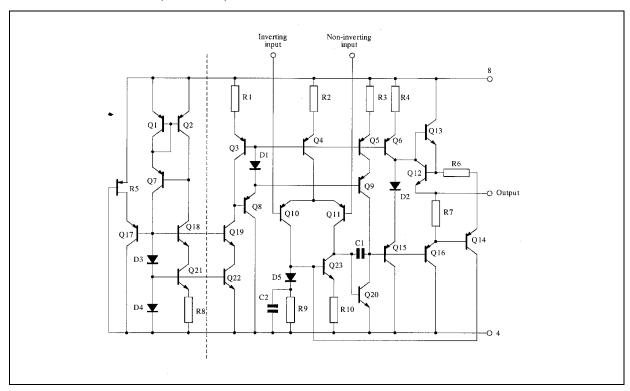

The circuit presents very stable electrical characteristics over the entire supply voltage range, and is particularly intended for professional and telecom applications (active filter, etc).

ORDER CODE


Part Number	Temperature Range	Package						
Fait Number	Temperature Nange	N	D					
LS204C	0°C, +70°C	•	•					
LS204I	-40°C, +105°C	•	•					
Example: LS2	Example: LS204CN							

N = Dual in Line Package (DIP)

D = Small Outline Package (SO) - also available in Tape & Reel (DT)



PIN CONNECTIONS (top view)

November 2001 1/10

SCHEMATIC DIAGRAM (1/2 LS204)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	±18	V
V _i	Input Voltage	±V _{CC}	V
V_{id}	Differential Input Voltage	±(V _{CC} -1)	V
T _{oper}	Operating Temperature Range LS204C LS204I	0 to +70 -40 to +105	°C
P _{tot}	Power Dissipation at T _{amb} = 70°C ¹⁾	500	mW
T _J	Junction Temperature	150	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C

^{1.} Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded.

2/10

ELECTRICAL CHARACTERISTICS

 $V_{CC} = \pm 15V$, $T_{amb} = 25$ °C (unless otherwise specified)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Councile ad	Davamatan	LS204I				LS204C		l lmit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{cc}			0.7	1.2		0.8	1.5	mA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{ib}	T _{amb} = 25°C		50			100		nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R _i	Input Resistance (f = 1kHz)		1			1		ΜΩ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{io}	T_{amb} = 25°C T_{min} < T_{op} < T_{max}		0.5			0.5		mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DV_io			5			5		μV/°C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{io}			5			12		nA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DI _{io}			0.08			0.1		nA/°C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{os}	Output Short-circuit Current		23			23		mA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A _{vd}	$T_{min} < T_{op} < T_{max}$ $R_L = 2k\Omega$ $V_{CC} = \pm 15V$	90			86			dB
$\begin{array}{c} e_n \\ e_n \\ R_s = 50\Omega \\ R_s = 10k\Omega \\ R_s = 10k\Omega \\ \end{array} \\ \begin{array}{c} R_s = 100\Omega \\ R_s = 10k\Omega \\ \end{array} \\ \end{array} \\ \begin{array}{c} R_s = 10k\Omega \\ \end{array} \\ \end{array} \\ \begin{array}{c} R_s = 10k\Omega \\ \end{array} \\ \end{array} \\ \begin{array}{c} R_s = 10k\Omega \\ \end{array} \\ \end{array} \\ \begin{array}{c} R_s = 10k\Omega \\ \end{array} \\ \end{array} \\ \begin{array}{c} R_s = 10k\Omega \\ \end{array} \\ \end{array} \\ \begin{array}{c} R_s = 10k\Omega \\ \end{array} \\ \end{array} \\ \begin{array}{c} R_s = 10k\Omega \\ \end{array} \\ \end{array} \\ \begin{array}{c} R_s = 10k\Omega \\ \end{array} \\ \begin{array}{c}$	GBP	Gain Bandwith Product (f =100kHz)	1.8	3		1.5	2.5		MHz
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e _n	$f = 1kHz$, $R_s = 100\Omega$ $R_s = 50\Omega$ $R_s = 1k\Omega$		10			12		<u>nV</u> √Hz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	THD			0.03			0.03		%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	±V _{opp}	$R_L = 2k\Omega$ $V_{CC} = \pm 15V$	±13	±3		±13	±3		٧
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{opp}			28			28		Vpp
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SR	Slew Rate ($R_L = 2k\Omega$, unity gain)	0.8	1.5			1		V/μs
$ \begin{array}{c c} CMR & V_{ic} = \pm 10V \\ T_{min} < T_{op} < T_{max} \end{array} \qquad \qquad 90 \qquad \qquad 86 \qquad \qquad 86 $	SVR	$T_{min} < T_{op} < T_{max}$	90			86			dB
V ₀₁ /V ₀₂ Channel Separation (f= 1kHz) 100 120 120 dB	CMR	$V_{ic} = \pm 10V$	90			86			dB
	V ₀₁ /V ₀₂	Channel Separation (f= 1kHz)	100	120			120		dB

Figure 1: Supply Current versus Supply Voltage

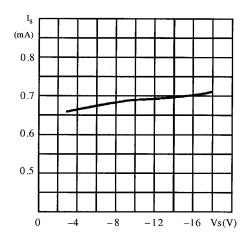


Figure 3: Output Short Circuit Current versus Ambient Temperature

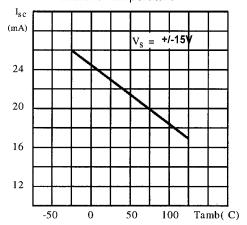


Figure 5 : Output Loop Gain versus Ambient Temperature

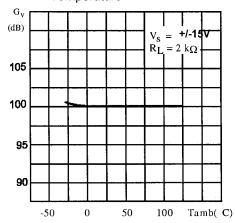
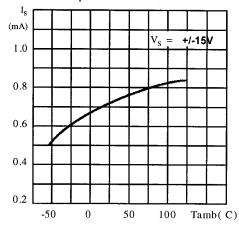



Figure 2: Supply Current versus Ambient Temperature

Figure 4 : Open Loop Frequency and Phase Response

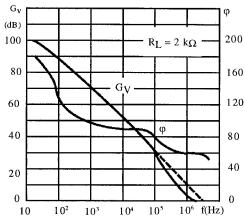
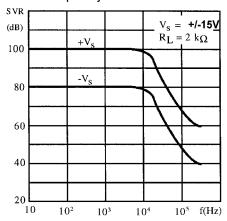



Figure 6 : Supply Voltage Rejection versus Frequency

4/10

Figure 7: Large Signal Frequency Response

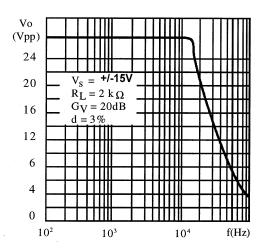
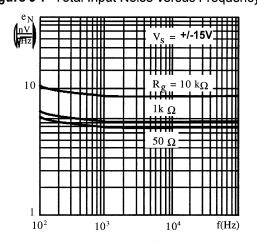



Figure 9: Total Input Noise versus Frequency

Figure 8 : Output Voltage Swing versus Load Resistance

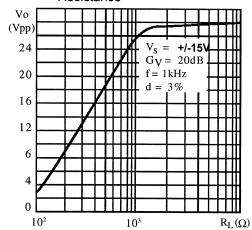
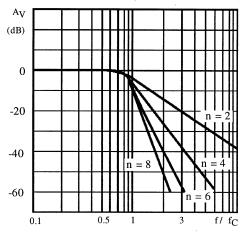
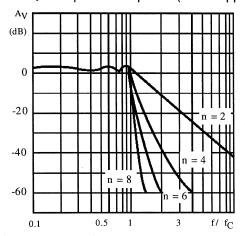




Figure 10: Amplitude Response

Figure 11: Amplitude Response (±1dB ripple)

APPLICATION INFORMATION: Active low-pass filter

BUTTERWORTH

The Butterworth is a "maximally flat" amplitude response filter (figure 10) Butterworth filters are used for filtering signals in data acquisition systems to prevent aliasing errors in samples-data applications and for general purpose low-pass filtering.

The cut-off frequency Fc, is the frequency at which the amplitude response is down 3dB. The attenuation rate beyond the cutoff frequency is n6 dB per octave of frequency where n is the order (number of poles) of the filter.

Other characteristics:

- ☐ Flattest possible amplitude response
- ☐ Excellent gain accuracy at low frequency end of passband

BESSEL

The Bessel is a type of "linear phase" filter. Because of their linear phase characteristics, these filters approximate a constant time delay over a limited frequency range. Bessel filters pass transient waveforms with a minimum of distortion. They are also used to provide time delays for low pass filtering of modulated waveforms and as a "running average" type filter.

The maximum phase shift is $\frac{-n\pi}{2}$ radians where

n is the order (number of poles) of the filter. The cut-off frequency fc, is defined as the frequency at which the phase shift is one half of this value.

For accurate delay, the cut-off frequency should be twice the maximum signal frequency.

The following table can be used to obtain the -3dB frequency of the filter.

	2 Pole	4 Pole	6 Pole	8 Pole
-3dB Frequency	0.77fc	0.67fc	0.57fc	0.50fc

Other characteristics:

- ☐ Selectivity not as great as Chebyschev or Butterworth
- Very little overshoot response to step inputs
- ☐ Fast rise time

CHEBYSCHEV

Chebyschev filters have greater selectivity than either Bessel ro Butterworth at the expense of ripple in the passband (figure 11).

Chebyschev filters are normally designed with peak-to-peak ripple values from 0.2dB to 2dB.

Increased ripple in the passband allows increased attenuation above the cut-off frequency.

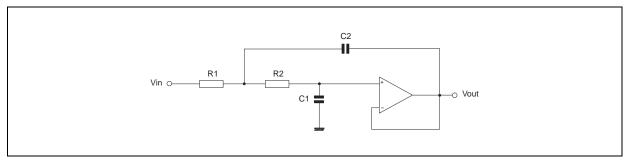
The cut-off frequency is defined as the frequency at which the amplitude response passes through the specificed maximum ripple band and enters the stop band.

Other characteristics:

- Greater selectivity
 - Very non-linear phase response
- ☐ High overshoot response to step inputs

The table below shows the typical overshoot and setting time response of the low pass filters to a step input.

	Number of Poles	Peak Overshoot	Settling	Time (% of fina	al value)
		% Overshoot	±1%	±0.1%	±0.01%
	2	4	1.1Fc sec.	1.7Fc sec.	1.9Fc sec.
Duttomuorth	4	11	1.7/fc	2.8/fc	3.8/fc
Butterworth	6	14	2.4/fc	3.9S/fc	5.0S/fc
	8	14	3.1/fc	5.1/fc	7.1/fc
	2	0.4	0.8/fc	1.4/fc	1.7/fc
Bessel	4	0.8	1.0/fc	1.8/fc	2.4/fc
	6	0.6	1.3/fc	2.1/fc	2.7/fc
	8	0.1	1.6/fc	2.3/fc	3.2/fc
	2	11	1.1/fc	1.6/fc	-
Chabysachay (ripple + 0.25dD)	4	18	3.0/fc	5.4/fc	-
Chebyschev (ripple ±0.25dB)	6	21	5.9/fc	10.4/fc	-
	8	23	8.4/fc	16.4/fc	-
	2	21	1.6/fc	2.7/fc	
Chabyaahay (ripple + 1dP)	4	28	4.8/fc	8.4/fc	-
Chebyschev (ripple ±1dB)	6	32	8.2/fc	16.3/fc	-
	8	34	11.6/fc	24.8/fc	-


Design of 2nd order active low pass filter (Sallen and Key configuration unity gain op-amp)

Fixed R = R1 = R2, we have (see figure 12)

$$C1 = \frac{1}{R} \frac{\zeta}{\omega c}$$

$$C2 = \frac{1}{R} \frac{1}{\xi \omega c}$$

Figure 12: Filter Configuration

Three parameters are needed to characterize the frequency and phase response of a 2nd order active filter: the gain (Gv), the damping factio (ξ) or the Q factor (Q = 2 ξ)¹), and the cuttoff frequency (fc).

The higher order response are obtained with a series of 2nd order sections. A simple RC section is introduced when an odd filter is required.

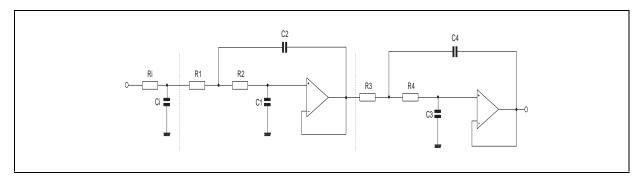

The choice of ξ' (or Q factor) determines the filter response (see table 1).

Table 1

Filter Response	ξ	Q	Cuttoff Frequency fc
Bessel	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{1}}{3}$	Frequency at which Phase Shift is -90°C
Butterworth	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	Frequency at which Gv = -3dB
Chebyschev	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	Frequency at which the amplitude response passes through specified max. ripple band and enters the stop bank.

EXAMPLE

Figure 13: 5th Order Low-pass Filter (Butterworth) with Unity Gain configuration

In the circuit of figure 13, for fc = 3.4kHz and R_i = R1 = R2 = R3 = $10k\Omega$, we obtain:

Ci = 1.354
$$\frac{1}{R} \frac{1}{2\pi fc}$$
 = 6.33nF
C1 = 0.421 $\frac{1}{R} \frac{1}{2\pi fc}$ = 1.97nF
C2 = 1.753 $\frac{1}{R} \frac{1}{2\pi fc}$ = 8.20nF
C3 = 0.309 $\frac{1}{R} \frac{1}{2\pi fc}$ = 1.45nF
C4 = 3.325 $\frac{1}{R} \frac{1}{2\pi fc}$ = 15.14nF

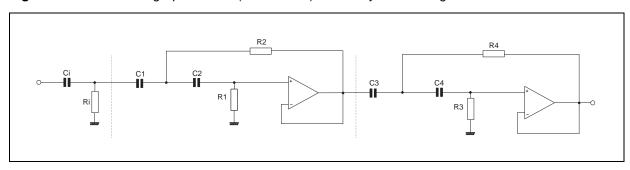
The attenuation of the filter is 30dB at 6.8kHz and better than 60dB at 15kHz.

The same method, referring to table 2 and figure 14 is used to design high-pass filter. In this case the damping factor is found by taking the reciprocal of the numbers in table 2. For fc = 5kHz and Ci = C1 = C2 = C3 = 1nF we obtain:

$$Ri = \frac{1}{0.354} \frac{1}{C} \frac{1}{2\pi fc} = 25.5 k\Omega$$

$$R1 = \frac{1}{0.421} \frac{1}{C} \frac{1}{2\pi fc} = 75.6 \text{k}\Omega$$

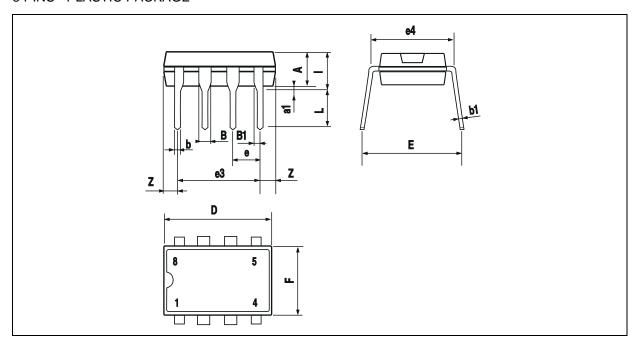
$$R2 = \frac{1}{1.753} \frac{1}{C} \frac{1}{2\pi fc} = 18.2 \text{k}\Omega$$


$$R3 = \frac{1}{0.309} \frac{1}{C} \frac{1}{2\pi fc} = 103 \text{k}\Omega$$

$$R4 = \frac{1}{3.325} \frac{1}{C} \frac{1}{2\pi fc} = 9.6k\Omega$$

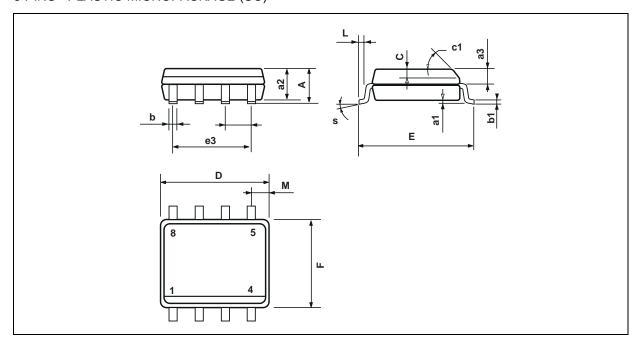
Table 2: Damping Factor for Low-pass Butterworth Filters

Order	Ci	C1	C2	C3	C4	C5	C6	C 7	C8
2		0.707	1.41						
3	1.392	0.202	3.54						
4		0.92	1.08	0.38	2.61				
5	1.354	0.421	1.75	0.309	3.235				
6		0.966	1.035	0.707	1.414	0.259	3.86		
7	1.336	0.488	1.53	0.623	1.604	0.222	4.49		
8		0.98	1.02	0.83	1.20	0.556	1.80	0.195	5.125


Figure 14: 5th Order High-pass Filter (Butterworth) with Unity Gain configuration

8/10

PACKAGE MECHANICAL DATA


8 PINS - PLASTIC PACKAGE

D :		Millimeters			Inches	
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.
Α		3.32			0.131	
a1	0.51			0.020		
В	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
Е	7.95		9.75	0.313		0.384
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0260
i			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.060

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions		Millimeters			Inches			
אווופוואוטווא	Min.	Тур.	Max.	Min.	Тур.	Max.		
А			1.75			0.069		
a1	0.1		0.25	0.004		0.010		
a2			1.65			0.065		
a3	0.65		0.85	0.026		0.033		
b	0.35		0.48	0.014		0.019		
b1	0.19		0.25	0.007		0.010		
С	0.25		0.5	0.010		0.020		
c1			45°	(typ.)				
D	4.8		5.0	0.189		0.197		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		3.81			0.150			
F	3.8		4.0	0.150		0.157		
L	0.4		1.27	0.016		0.050		
M			0.6			0.024		
S			8° ((max.)	•	•		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

© http://www.st.com